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A novel and useful method for the synthesis of 2-arylpyridines with a high efficiency and generality was
achieved by utilizing the one-pot 6p-azaelectrocyclization followed by a base treatment. This is the first
example of applying a sulfonamide to the azaelectrocyclization for efficient substituted pyridine
synthesis.
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Pyridine, a representative heteroaromatic ring compound, plays
a significant role in various fields. For example, there are many bio-
active pyridine compounds such as the prosthetic pyridine nucleo-
tide (NADP),1 pyridoxine (vitamin B6), and nicotine,2 and there are
also many pharmaceuticals3,4 and agrochemicals5 possessing a
pyridine nucleus. Thus, new construction methods for multi-
substituted pyridines are still intriguing studies.6 2-Arylpyridine
compounds are used not only as medicinal chemicals7 but also as
functional materials in supramolecular and coordination chemis-
tries.8 The representative method for the synthesis of these mole-
cules is to utilize the coupling reaction of 2-metallopyridine and an
aryl halide (e.g., Negishi,9 Suzuki,10 Stille,11 and Kharash12 coupling).
2-Metallopyridine, however, is usually unstable and has a low
compatibility with its substituents, because it needs to be prepared
from pyridyl lithium which is highly polar and basic. Although
some alternative methods for the synthesis of 2-arylpyridine have
recently been reported by employing pyridine-N-oxide13 and the
C–H bond activation of pyridine,14 they still need to be improved
regarding the aspects of yield, efficiency, and generality. In this
Letter, we describe a highly efficient and novel synthetic method
of 2-arylpyridines using our own one-pot 6p-azaelectrocyclization.
This strategy easily enabled us to obtain 2-arylpyridines by
sequential three steps in one-pot; that is, the formation of
azatriene, azaelectrocyclization, and aromatization.

In a previous study, we found the significant acceleration of 6p-
azaelectrocyclization by the obvious substituent effect due to the
ll rights reserved.
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presence of a pair of C4-electron-withdrawing and C6-conjugating
substituents in azatrienes to quantitatively produce the corres-
ponding dihydropyridines in 5 min at room temperature.15,16

Moreover, we reported two types of one-pot pyridine syntheses
from aldehyde 1 (Fig. 1A).16b The first one was achieved by the
reaction of 1 with hydroxylamine hydrochloride in pyridine to pro-
duce the corresponding oxime, which continuously reacted with
acetyl chloride in the same solvent to produce the corresponding
pyridine derivative. The second method utilized the Peterson olefi-
nation. Thus, aldehyde 1 was treated with lithium hexamethyldisi-
lazide to produce the unstable intermediate dihydropyridine
derivative, which was continuously treated with DDQ. Although
these are new methods of pyridine synthesis under mild conditions
utilizing 6p-azaelectrocyclization, the generality of these methods
had not been totally developed because of the relative instability of
the corresponding aldehydes. We then tried to achieve the novel
one-pot 2-arylpyridine synthesis including a sequence that
involves the coupling of three components (amine, vinylstannane,
and iodoolefin) in the presence of a palladium catalyst, generation
of dihydropyridine by 6p-azaelectrocyclization, followed by
aromatization by a treatment of base (Fig. 1B).

We first investigated the desirable amine derivative for the one-
pot reaction possessing the appropriate leaving ability (Table 1).
Acetamide and methylcarbamate did not produce the desired dihy-
dropyridine derivative under the conditions which were previously
established for our asymmetric one-pot azaelectrocyclization:17 a
mixture of amine derivative, vinylstannane, and iodoolefin in
DMF was stirred at 80 �C in the presence of a Pd catalyst, trifuryl-
phosphine, and lithium chloride (Table 1, entries 1 and 2). In the
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Figure 1. (A) Previous method for one-pot pyridine synthesis via 6p-azaelectrocyclization. (B) Novel one-pot pyridine synthesis from three components.

Table 1
Investigation of the desirable amine derivative

Entry R1-NH2 Time (h) Yield (%)

1 MeCONH2 12 —
2 MeOCONH2 12 —
3 t-BuSONH2 1.5 18
4 MeSO2NH2 2 72

Table 2
One-pot pyridine synthesis using various vinyl stannanes

Entry R Condition Product Yield (%)

1 A 4 75

2 A 8p 58

3 B 9p 56

4 B 10p 67
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case of 2-methyl-2-propanesulfinamide, the desired product was
obtained in low yield (Table 1, entry 3). When methanesulfon-
amide possessing a greater electron-withdrawing property was
applied under the same condition, the reaction cleanly proceeded
to afford the corresponding dihydropyridine in 72% yield.

Next, the conversion of the obtained dihydropyridine deriva-
tives into the desired pyridine compounds was examined (Scheme
1). After various trials, we obtained the required pyridine deriva-
tive 4 in 55% yield using DBU as a base in DMF.18 The one-pot
transformation from methanesulfonamide 5, iodoolefin 6,16b and
vinylstannane 719 into pyridine 4 was then examined. After the
one-pot azaelectrocyclization of the three components, the result-
ing dihydropyridine was detected by TLC, and then DBU was added
and the mixture was stirred at room temperature for another 1 h.
As a result, the desired pyridine compound 4 was successfully
obtained in 75% yield. Thus, we could rapidly construct the
pyridine skeleton from the following three components: methane-
Scheme 1. (A) Conversion of dihydropyridine 3 to pyridine 4. (B) One-pot pyridine
synthesis from three components (5, 6, and 7).
sulfonamide, iodoolefin, and vinylstannane, which were stable and
easily synthesized.

Next, we investigated the generality of our one-pot pyridine
synthesis using various vinylstannanes19 in order to make this
method a practical synthetic strategy for 2-arylpyridines (Table
2). We applied two methods: Method A {Pd2(dba)3, P(2-furyl)3,
LiCl, DMF, 80 �C then DBU, rt} shown in Scheme 1 was normally
used and method B {Pd(PhCN)2Cl2, LiCl, DMF, 50–70 �C then DBU,
5 B 11p 76

6 B 12p 77

7 B 13p 49

Method A: Pd2(dba)3, P(2-furyl)3, LiCI, DMF, 80 �C then DBU, rt.
Method B: Pd(PhCN)2CI2, LiCI, DMF, 50–70 �C then DBU, rt.



Figure 2. Plausible reaction mechanism leading to pyridine derivative 4 by one-pot
azaelectrocyclization–aromatization.
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rt} was often superior to method A.20 When the pyridine deriva-
tives of vinylstannane were used, the corresponding pyridylpyri-
dine compounds 8p and 9p were obtained in good yield
independent from their substitution pattern (Table 2, entries 2
and 3). The quinoline and thiophene derivatives also produced pyr-
idine compounds 10p and 11p in 67% and 76% yield, respectively.
Moreover, in the case of the indole derivatives, the C3-substituted
indole 12p was obtained in high yield and the C2-substituted one
13p was formed in moderate yield.21 Thus, we synthesized various
types of 2-arylpyridines, and established a novel strategy for
the simple and rapid synthesis of 2-arylpyridines with a high
generality.

The plausible reaction mechanism is shown in Figure 2. When a
mixture of 5, 6, and 7 was treated with a Pd catalyst, the Stille cou-
pling of 6 and 7 firstly proceeded to form the dienal 14.22 Next, the
resulting aldehyde reacted with methanesulfonamide 5 to give
imine 15, and then rapidly underwent 6p-azaelectrocyclization to
afford the dihydropyridine 3. A Pd catalyst would act as a Lewis
acid during the imine formation, because aldehyde 14 did not react
with methanesulfonamide 5 without a Pd catalyst. After the forma-
tion of 3 was ascertained by TLC, a DBU treatment facilitated the
elimination of sulfinic acid to give the desired pyridine 4. Thus,
an efficient synthetic method of 2-arylpyridines was realized. By
using a sulfonamide resin, a library synthesis of various substituted
pyridines in the solid phase is now undertaken.

In conclusion, we established a novel synthetic method for 2-
arylpyridines with a high efficiency and generality. This is based
on the effective utilization of the one-pot 6p-azaelectrocyclization
followed by aromatization. To the best of our knowledge, this is a
first example of applying a sulfonamide to the azaeletrocyclization
as a nitrogen source, whose reasonable leaving ability successfully
led to the following simple conversion of the dihydropyridine into
pyridine.
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